Copycat: Unsupervised SKkill Acquisition for Imitation

Mrinal Verghese, Vignesh Rajmohan

Abstract—Skill acquisition is an important component of
robot manipulation. In this work, we present a method for
discovering and learning robot skills from unlabeled video
demonstrations of human behaviour. By clustering demonstra-
tions of behaviour in a latent space and identifying predicates
in demonstrations, we are able to autonomously learn skills.
We evaluate our method by tasking a robot to imitate human
demonstrations of skills. Our method is able to successfully
identify and learn 4 out of 6 skills present in demonstrations
and correctly imitates the human demonstrator in 3 out of 6
demonstrations.

I. INTRODUCTION

Manipulation skills are an important part of robot manipu-
lation research. They enable a level of abstraction and allow
the robot to reason and plan in a high level action space.
In robot learning problems they have been shown to greatly
reduce the dimensionality of the problem and significantly
improve data efficiency [1]. However, generating skills can
require significant engineering effort and maintaining a li-
brary of skills would require adding further skills as the
robot encounters new tasks. As such, we seek to explore
methods to discover and learn new skills for robots in an
unsupervised manner. There exists large labeled datasets of
human activity and object interaction [2] [3] and even more
unlabeled videos of human activity on the internet. We would
like to leverage these data sources to learn manipulation skills
from the behaviour they contain.

A crucial component that enables this work is the work
by Rothfuss and Ferreira et. al [4]. They explored learning
an embedding network that produced a latent space where
videos of tasks show strong intra-class similarity. They also
briefly explored using this latent space to index past expe-
riences and generate robot behaviour. We seek to continue
their efforts by using their network to facility skill discovery
and learning.

A. Contributions

In this work, we use the latent space from Rothfuss and
Ferreira et. al to explore clustering demonstrations of skills
and learning skills from those clusters. We collect our own
dataset of skill demonstrations, embed them in the latent
space, cluster them, and extract the primitives to execute the
skill on a real robot. To test our discovered skills, we embed
a new skill demonstration in the latent space, find its closest
skill cluster, execute that skill on a real robot, and verify the
robot executed the same behaviour as the demonstrator. We
show that our system is capable of recognized four out of the
six skills present in the demonstrations, and can successfully
reconstruct them to copy the demonstrator.

II. RELATED WORK

There is a broad range of prior work on learning skills or
primitives from demonstrations. Dynamic Movement Prim-
tives are a common technique for learning trajectories that
can the be parameterized by goal loaction, trajectory du-
ration, and other factors [5]. They have show broad suc-
cess in robot control. Lioutikov ef. al explored learning
primitves from demonstrations using Probabilistic Movement
Primitives, an extension of Dynamic Movement Primitives
[6]. They segment behaviour in unlabeled demonstration
trajectories and then use Probabilistic Movement Primitives
to find commonalities in the segments. They show their
results on a drawing task and a furniture assembly task.
Konidaris et. al also explored symbolic skill discovery for
long-horizon manipulation tasks [7]. Their work is capable
of learning symbolic environment representations, as well as
preconditions and skill transition models. We seek to further
expand on these works by learning skills, their preconditions,
and their outcomes from unlabeled video demonstrations.

III. METHODS
A. Hardware Setup

For our experimental setup, we create two sets of objects,
a pair of red and blue cubes for the human agent to interact
with, and a pair of steel nuts, painted red and blue for
the robot to manipulate. To assist in this manipulation,
the DeltaZ robot has an electromagnet attached to its end-
effector. The electromagnet is connected to a power supply
via a MOSFET, that can turn it on and off based on a
signal from the same Arduino microcontroller that controls
the DeltaZ robot. Because of issues with residual current in
the electromagnet, layers of duct tape are added to the top
of the nuts and also painted, to increase their distance from
the electromagnet and ensure they detatch when the magnet
is turned off. Figure 1 shows the robot setup.

We employ an Intel Realsense D435 RGB-D camera for
tracking objects. We use color segmentation based on the
HSV color space to identify our objects in the scene and
the KCF tracker [8] from the openCV vision library to
track objects under partial occlusion. In order to accurately
manipulate objects , we find the extrinsic matrix between the
camera frame and the world frame (we assume the robot is
at the world frame origin). We place a colored dot on the
robot end-effector to track it, and then move the end effector
to 30 randomly sampled points in the robot workspace. We
record the position of the robot end-effector in the world
frame, and the observed position of robot end-effector in the
camera frame. Finally we use an optimzer to find the SE(3)

Fig. 1. The robot setup with the DeltaZ robot and attached electromagnet,
Realsense camera, and colored blocks to be manipulated.

transformation that minimized the difference between the
robot-frame points and the transformed camera-frame points.

To manipulate the robot objects, we define two primitives
a grasp primtive and a place primitive. The grasp primitive
is paramterized by block to be grasped. The robot actuates
to the block’s coordinates, found via the camera and its
extrinsics, and then activates the electromagnet to grasp the
block. The place primitive is parameterized by a location in
the robots workspace. The robot actuates to this location,
and deactivates its electromagnet to drop the block. The
combination of these two primitives allows us to move blocks
around the robot workspace.

B. Data collection

We define three different skills each with two variants for
our problem. We consider stacking skills, where an agent
must stack one block on another, moving skills, where an
agent must move both blocks to one side of the environment,
and unstacking skills, where an agent must remove the top
block from a stack of blocks. For the stacking and unstacking
skills, the two skill variations depend on which block is on
top of the stack, red or blue. For the moving skills, the
skill variations depend on which side of the environment
the blocks end up on, left or right. For each skill variation,
we collection 20 demonstration videos of a human agent
executing the skill using an RGB camera, for a total of 120
skill demonstrations. A view of our demonstration collection
setup can be seen in figure 2.

C. Farsing predicates

In order to ultimately identify which primitives comprise
each demonstration, we first parse the demonstrations by
identifying which predicates are true at the beginning,
end, and during the demonstration. For the beginning and
end of the demonstration, we identify four predicates,
Clear(Red), Clear(Blue), On(Red,Blue), On(Blue,Red),
where Clear(A) defines if object A is graspable, and

15

Fig. 2. View of the demonstration capturing setup. A human agent
manipulations the red and blue blocks to show examples of skills.

- f— . A

Fig. 3. The first and last frame of a stacking demonstration.

On(A,B) defines if object A is on top of object B. During
the demonstration we also identify four predicates,
Moved(Red), Moved(Blue), Right(Red), Right(Blue),

where Moved(A) indicates object A moved during the
demonstration, and Right(A) indicates if object A moved
right (implying if object A moved, but did not move right,
it must have moved left).

To identify if the On(A,B) predicate was true, we looked
to see if object A was within a certain distance of object
B and object A’s y-coordinate was greater than object B’s
y-coordinate using pixel coordinates in the camera frame
with the origin in the bottom left of the image. The On(A,B)
predicate also informed the Clear(B) predicate, if the former
was true, the latter must have been false. To identify if the
Moved(A) predicate was true, we examined if the change in
position between object A in the first frame of the demon-
stration, and the last frame of the demonstration was greater
than a threshold. To identify the Right(A) we examined if
object A moved, and the movement was in the positive x
direction. Figure 3 shows the first and last frame from a
stacking demonstration, and table I shows the predicates for
this demonstration.

D. Network embedding

To embed our demonstration in a latent space, we draw
on the work of Rothfuss and Ferreira er. al [4]. They
train a network to embed video demonstrations of tasks in
a latent space. Their network follows an encoder decoder

TABLE I
PREDICATE VALUES BEFORE AND AFTER THE DEMONSTRATION IN

FIGURE 3
Clear(R) | Clear(B) | On(R,B) | On(B,R)
Beg. True True False False
End True False True False
Moved(R) | Moved(B) | Right(R) | On(B)
Dur. True False False False
Y1 Yk
[- fc LSTM — -
J— - fc
=Y - | conv LSTM;
= — convs
< conv LSTM,

convy
3] —r E— H
| E— —
[S— —
 e— —

< conv LSTM;
IS conv,

Fig. 4. The network architecture presented in [4]

structure. Given a task video of n frames, they define a visual
experience as X = X, ||X, = z1,...,2%/|Tk11, ..., Tn,
where X, is the portion of video frames until frame &, and
X, is the remaining n — k frames. Their network follows
an encoder-decoder structure where the encoder E maps the
input maps the input X, to a latent vector V.

V = E(Xg) (D

This latent representation is forwarded to two decoders,
the first, D, tries to reconstruct the input frames X, and
the second D, tries to predict the subsequent frames X,.
Formally this looks like

D, (V)=Y,=y1,..., Yk

Dyp(V) =Yp = Ys1:- - Un
where y; are frames output by the decoders. The outputs
Y, Y, are compared to the ground truth X,., X, and the loss
is computed as a weighted average of the image reconstruc-

tion loss, and the gradient difference loss between the input
and output.

2

L= (1 - n)Lmse + nLgdl 3)

The encoder is comprised of alternating ConvLSTM layers
are regular convolution layers in order to capture both spatial
and temporal relationships in the input videos. The Decoder
is similarly structured but with deconvolution layers instead.
Figure 4 shows their network structure

Their network is trained on the “20BN-something-
something” dataset, a dataset approximately 100 thousand
clips of human object interactions [3]. To embed our demon-
strations in the network, we sample six frames from the
demonstration, the first and last frame, and then 4 evenly

distributed frames in between. We downsample these frames
from 640x480 pixels to 133x100 pixels, feed them into
the encoder, and save the 2000-dimensional latent space. We
then use Principle Component Analysis across our datatset
of 120 demonstrations to project the latent vectors to a 50-
dimensional space. This 50-dimensional latent space repre-
sentation of our skill demonstration dataset is the represen-
tation we use for clustering.

E. Demonstration clustering

The next step in our process is to cluster the unlabeled
latent representations of our skill demonstrations into new
skills. To accomplish this we use K-Means clustering with
K = 6 as we expect to have six skill clusters. For each skill
cluster, we take the predicate tables for all demonstrations
in that cluster, and average their values, treating True as 1
and False as 0. We threshold the resulting predicate table at
0.5, considering cells with values above that to be True, and
cells with values below that to be false.

FE. Primitive selection

The last step in our process is to take a given predicate
table, and use it to inform which combination of primitives
will most closely match the predicates. There are three cases
to consider based on the Moved(A) predicate, the case where
no blocks move, which is trivial, the case where one block
moves, and the case where both blocks move. If one block
moves, say the red block, we first execute the grasping
primitive to pickup that block. We then check the Right(A)
predicate and the On(A,B) predicate. If the red block ends
up on the blue block (On(Red,Blue) = True), we execute the
place primitive parameterized by the blue blocks location,
otherwise we parameterize the place primitive by a location
on the left or right side of the workspace, depending on
the value of the Right(Red) predicate. If two blocks move,
we first check both the end On(A,B) predicates . If either
is true, we move block B to a side of the workspace
depending on the Right(B) predicate via a combination of
grasp and place primitives. We then grasp the other block,
block A, and place it on top of block B by excuting the place
primitive parameterized by block B’s location. If neither of
the On(A,B) predicates are true, we grasp and place each
block based on its Right(A) predicate.

IV. RESULTS
A. Network Embedding Results

We first examine the inter and intra-class similarity of
skills demonstrations embedded in the latent space. We
examin two metrics for similarity, cosine similarity and L2-
distance. Figure 5 shows the similarity matrices for both of
these methods.

We also explore classification of new demonstrations using
a nearest neighbors approach in the latent space. The results
of this experiment are show in the confusion matrix in figure
6. L2-distance showed slightly higher performance with 63%
classification accuracy and that is the similarity metric we
will be using going forward.

Fig. 5. Matrices showing similarities between demonstrations in the
latent space using Cosine similarity and L2-distance respectively. Each 20
demonstrations is a different skill variation, in order they are: stack red-blue,
stack blue-red, move left, move right, unstack red-blue, unstack blue-red.

Both these results show strong intra-class similarity for the
skill variants: stack red-blue, stack blue-red, move left, and
move right. However the unstack skills show little distinction
between their variants. In fact without the unstack skills, the
classification accuracy jumps to 85%.

B. Skill Reconstruction

We proceed to examine the correlation between the recon-
structed skills and the original skills in the demonstrations
by looking at the reconstructed predicate tables for the skill
clusters. Table II shows both the original predicates for
each of the skills, and the predicates for each of the six
reconstructed skills as the top and bottom tables respectively.
The predicates are arranged as the four beginning predicates,
the four end predicates, and the four during predicates. Some
reconstructed skills have clear correlation to original skills.

HEHOoonWwNHEO

Fig. 6. Confusion matrix for a nearest neighbors classification in the latent
space. The six skills in order are: stack red-blue, stack blue-red, move left,
move right, unstack red-blue, unstack blue-red.

Skill 6 is stack red-blue, and skill 4 is stack blue-red. Move
right is skill 2, but move left is represented in both skills
1 and 5. The lack of strong intra-similarity shown in the
similarity matrix results would indicate the unstack skill
demonstrations form poor clusters and that idea is reinforced
here. None of the reconstructed skills correlate to the unstack
skills. Skill 3, the closest reconstructed skill to unstacking,
has the incorrect preconditions, but recognizes that only the
blue block should be moved, and has the correct outcome.

C. Demonstration Imitation

Lastly, we test our method by evaluating its capacity to
imitate a human demonstrator using its learned skills. We
embed a new human demonstration in the latent space and
compare it to our skill clusters to find the closest skill cluster.
We then execute the primitives associated with the predicate
table for that skill, and compare the resultant robot behaviour
to the human demonstration.

The move demonstrations were able to successfully re-
cover their skills. The new move left demonstration executed
skill 5, one of the valid move left skills, and the new move
right demonstration executed skill 2, the valid move right
skill. The stack demonstrations were less successful. The
stack red-blue demonstration correctly execute skill 6 the
stack red-blue skill. However, the stack blue-red demonstra-
tion executed skill 3 which had no direct correlation to any
original skill. This resulted in the robot correctly picking up
the blue block, but placing it next to the red block, instead of
on top. The results of the stack demonstration skill execution
can be seen in figure 7. The unstack skills didn’t have corre-
lated learned skills, so they were unable to properly imitate
the demonstration. The unstack demonstrations happened to
be closest to a stack skill, and a move skill, but because their
preconditions were not met, their execution did not lead to

TABLE I
SKILL PREDICATE TABLE

Clear(R) | Clear(B) | On(R,B) | On(B,R) | Clear(R) | Clear(B) | On(R,B) | On(B,R) | Moved(R) | Moved(B) | Right(R) | Right(B)

Stk R-B True True False False True False True False True False N/A False
Stk B-R True True False False False True False True False True False N/A

Mv L True True False False True True False False True True False False

Mv R True True False False True True False False True True True True
Ustk R-B True False True False True True False False True False N/A False
Ustk B-R False True False True True True False False False True False N/A

Clear(R) | Clear(B) | On(R,B) | On(B,R) | Clear(R) | Clear(B) | On(R,B) | On(B,R) | Moved(R) | Moved(B) | Right(R) | Right(B)

Skill 1 True True False False True True False False True True False False
Skill 2 True True False False True True False False True True True True
Skill 3 True True False False True True False False False True False False
Skill 4 True True False False False True False True False True False True
Skill 5 True True False False True True False False True True False False
Skill 6 True True False False True False True False True False False False

Fig. 7. The result of executing the closest learned skill to a stack red-
blue demonstration, and a stack blue-red demonstration respectively. The
former executed the correct learned skill, but the latter misidentifies the
skill resulting in incorrect imitation.

meaningful manipulation. Refer to the companion video for
more detailed imitation results.

V. CONCLUSION

In this work we explored learning skills, and their precon-
ditions and outcomes from unlabeled video demonstrations.
We evaluated our method by tasking a robot to copy a hu-
man demonstrator using skills it learned in an unsupervised

manner. We were able to reconstruct 4 out of the 6 skills
present in the demonstrations, and when testing imitation
the robot correctly imitated the demonstrator in 3 out 6
demonstrations. While this work does have limitations, we
believe these are exciting preliminary results for this line of
investigation.

A. Limitations and Future work

Certain elements of this work were tailored to the skills
we tested and lack generality. The method for parsing
predicates from demonstrations, and learning preconditions
and outcomes was based heavily on prior knowledge of the
range of skills. Future work should explore more general
ways of identifying relevant predicates at various points
in demonstrations, possibly leveraging methods like those
found in [7] or [9]. Future work could also consider more
complex models for indexing behaviour in the latent space,
and other methods of clustering embedded demonstrations.
Lastly, due to computational constraints, we were only able
to experiment with a small dataset. It would be interesting
to see this work extended to the full ActivityNet or 20BN
dataset to identify skills present in those demonstrations. We
are excited to see how this exploration could lead to new
methods for robot skill aquistion, and ultimately smarter and
safer robots.

ACKNOWLEDGMENT

This work would not have been possible without the code
provided by Jonathan Rothfuss and Fabio Ferreira. We also
appreciate the assistance of Oliver Kroemer and his insights
into this work.

REFERENCES

[1] Dalal, Murtaza Pathak, Deepak Salakhutdinov, Ruslan. (2021). Ac-
celerating Robotic Reinforcement Learning via Parameterized Action
Primitives. Thirty-Fifth Conference on Neural Information Processing
Systems.

F. C. Heilbron, V. Escorcia, B. Ghanem and J. C. Niebles, ”Activi-
tyNet: A large-scale video benchmark for human activity understand-
ing,” 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2015, pp. 961-970, doi: 10.1109/CVPR.2015.7298698.

[2]

[4]

[6]

[7]

[8]

[9]

Goyal, Raghav Kahou, Samira Ebrahimi Michalski, Vin-
cent Materzynska, Joanna Westphal, Susanne Kim, Heuna
Haenel, Valentin Fruend, Ingo Yianilos, Peter Mueller-Freitag,
Moritz Hoppe, Florian Thurau, Christian Bax, Ingo Memise-
vic, Roland. (2017). The “Something Something” Video Database
for Learning and Evaluating Visual Common Sense. 5843-5851.
10.1109/ICCV.2017.622.

Rothfuss, J., Ferreira, F., Aksoy, E.E., Zhou, Y., Asfour, T. (2018).
Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic
Experiences for Robot Action Execution. IEEE Robotics and Automa-
tion Letters, 3, 4007-4014.

Schaal, S. (2006). Dynamic movement primitives-a framework for
motor control in humans and humanoid robotics. In Adaptive motion
of animals and machines (pp. 261-280). Springer, Tokyo.

Lioutikov, R., Neumann, G., Maeda, G., Peters, J. (2017). Learning
movement primitive libraries through probabilistic segmentation. The
International Journal of Robotics Research, 36(8), 879—-894.
Konidaris, G.D., Kaelbling, L.P., Lozano-Perez, T. (2018). From Skills
to Symbols: Learning Symbolic Representations for Abstract High-
Level Planning. J. Artif. Intell. Res., 61, 215-289.

Y. Yang and G. Bilodeau, "Multiple Object Tracking with Kernelized
Correlation Filters in Urban Mixed Traffic,” 2017 14th Conference
on Computer and Robot Vision (CRV), 2017, pp. 209-216, doi:
10.1109/CRV.2017.18.

Huang, De-An Xu, Danfei Zhu, Yuke Garg, Animesh Savarese, Sil-
vio Fei-Fei, Li Niebles, Juan Carlos. (2019). Continuous Relaxation
of Symbolic Planner for One-Shot Imitation Learning.

